First Total Synthesis of 4,5-Secoeudesmane-type and Iphionane-type Compounds --Synthesis of 4,5-Dioxo-seco- γ-eudesmol and 5 $\mathbf{\beta , 1 1 -}$ Dihydroxyiphionan-4-one

Zhao Ming XIONG, Gang ZHOU, Xiao Lei GAO, Yong Gang CHEN, Yu lin LI *
National Laboratory of Applied Organic Chemistry and Institute of Organic Chemistry, Lanzhou University, Lanzhou 730000

4, 5-Secoeudesmane-type and iphionane-type compounds are sesquiterpenes with new carbon skeletons found in natrual sources in recent years. ${ }^{1-6}$ The co-occurence of 4, 5secoeudesmanes, iphionanes and eudesmanes as natrual products suggests that 4, 5secoeudesmanes, iphionanes most likely are generated biogenetically from eudesmanes, and iphionanes are formed biogenetically by aldol reaction of 4, 5dioxosecoeudesmanes ${ }^{1,4,6,7}$. The study on the synthesis of this two kind of new sesquiterpenes has not been reported in the literature.

In 1987, Bohlman et al. reported the isolation of oxylpyranosides $\mathbf{1}$ and $\mathbf{2}$ from the North Eastern African plant Iphiona scabra and determination their structrues by spectroscopic methods ${ }^{2}$. This two compounds were also isolated from Iphiona mutronata by Ahmed et al. in 1990^{3}. Herein, we reported the first synthesis of their aglycones 3 and 4 (scheme).

Scheme

a. ref 8; b. mCPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 90 \%$; c. LiAlH_{4}, ether, r.t. 7 h, then $\mathrm{AlCl}_{2} \mathrm{H}, 0^{\circ} \mathrm{C}, 6 \mathrm{~h}, 82 \%$; d. $\mathrm{O}_{3} / \mathrm{O}_{2}$, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 50 \%$; e. t-BuOK, THF, $-20^{\circ} \mathrm{C}, 5 \mathrm{~h}, 70 \%$.

By the published method, ${ }^{8}$ (+)- α-cyperone 6 was easily prepared from (+)dihydrocarvone 5 in two steps using (R)-(+)-Phenylethylamines as chiral auxiliary. Epoxidation of 6 with mCPBA at $0^{\circ} \mathrm{C}$ gave epoxide 7. Compound 7 was reduced first with LiAH_{4} and then with $\mathrm{AlCl}_{2} \mathrm{H}^{9}$ in one pot to afford (+)- γ-eudesmol $\mathbf{8}^{10}$ in 80% yield. This result is remarkable, reduction of oxirane and deoxygenaration at $\mathrm{C}-3$ are complished in one step. $\mathrm{AlCl}_{2} \mathrm{H}$ is usually used for deoxygenaration of α, β-unsaturated carbonyl and allylic alcohols, and we found it also could reduce oxirane in a complementary way to LiAlH_{4} to yield less substituted alcohol. Reduction of epoxide 7 only with $\mathrm{AlCl}_{2} \mathrm{H}$ gave a epimeric mixture primary alcohol 9. So it is necessary to cleave the oxirane in 7 first with LiAlH_{4} (to give a tertiary alcohol) and then deoxygenerate at $\mathrm{C}-3$ by addition of $\mathrm{AlCl}_{2} \mathrm{H}$ to the reaction mixture. Our synthetic route to $(+)-\gamma$-eudesmol is much more efficient than those discribed in the literature. ${ }^{11}$ Ozonlysis of (+)- γ-eudesmol 8 gave 4, 5-dioxoseco- γ-eudesmol 3. Dione 3 was treated with t-BuOK in THF to yield 3,11-dihydroxyiphionan-4-one 4. The spectra date of $\mathbf{3}$ and $\mathbf{4}$ are consisted with their structure.

Acknowledgments

We are grateful for the financial supports from National Natural Science Foundation of China (Grant No. 29732060) and National Laboratory of Elemento-Organic Chemistry at Nankai University.

References and Notes

1. G. Appendino, P. Gariboldi, M. Calleri, G. Chiari, D. Viterbo, J. Chem. Soc. Perkin Trans I, 1983, 2975.
2. M. G. El-Ghazouly, N. A. El-Sebakhy, A. A. S. El-Din, C. Zdero, F. Bohlmann, Photochemistry, 1987, 26, 439.
A. A. Ahmed, A. A. S. El-Din, J. Nat. Prod. 1990, 53, 1031.
3. L. V. Castillo, A. M. D. Lanza, R. Fauer, L. R. Debrauwer, R. Elias, G . Balarsard, Phytochemistry, 1995 , 40, 1193.
4. A. F. Barrero, P. Arteaga, J. F. Quilez, I. Rodriguez, M. M. Herrador, J. Nat. Prod. 1997, 60, 1026.
5. F. Bohlman, C. Zdero, R. M. King, H. Robinson, Lieb. Am. Chem, 1983, 2227.
6. R. K. Haynes, S. C. Vonwiller, Acc. Chem. Res., 1997, 30, 73.
7. Z. M. Xiong, J. Yang, Y. L. Li, Tetrahedron: Asymmertry, 1996, 7, 2607.
8. J. H. Brewster, H. Q. Bayer, J.Org.Chem., 1964, 29, 105, 116.
9. Bates, Hendrickson, Chem. and Ind., 1962, 1759.
10. a) A. R. Pinder, R. A. Williams, J. Chem. Soc. 1963, 2773. b) A. J. Minnaard, J. B. P. A. Wijnberg, A. de Groot, Tetrahedron, 1994, 50, 4755.

Received 16 August 1999

